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Using the WKB approximation, we evaluate both the massless and massive scalar
and Dirac fields quasinormal modes (QNMs) of a Schwarzschild-de Sitter black hole.
The result shows that the field with higher masses and larger cosmological constant
� will decay more slowly. We also found that the global monopole is similar to
a factor to modify the κ of Dirac field or l of scalar field, where κ is the angular
momentum number of Dirac field, and l is the angular momentum number of scalar
field.

KEY WORDS: black hole physics; gravitational waves; relativity; QNMs.

1. INTRODUCTION

It is well-known that there are three stages during the evolution of the field
perturbation in black hole background: the initial outburst from the source of
perturbation, the quasinormal oscillations and asymptotic tails. The frequencies
and damping time of the quasinormal oscillations called “quasinormal modes”
are determined only by the black hole’s parameters and independent of the initial
perturbations. A great deal of efforts have been devoted to the black hole’s QNMs
for the possibility of direct identification of black hole existence through gravi-
tational wave detectors in the near future Kokkotas and Schmidt (1999); Nollert
(1999). The study of black hole’s QNMs has a long history, most of the studies
immersed in an asymptotically flat space-time. The discovery of the AdS/CFT

correspondence and the expanding universe motivated the investigation of QNMs
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in de Sitter Brady et al. (1997, 1999) and anti-de Sitter Horowitz and Gubeny
(1999); Cardoso and Lemos (2001); Moss and Norman (2002) space-time in past
few years.

In the early universe, phase transitions can give rise to various kinds of
topological defects such as monopoles. Monopoles form as a result of a gauge-
symmetry breaking which are similar to elementary particles. Most of their energy
is concentrated in a small region near the monopole core. Resulting from a global
symmetry breaking, global monopole Barriola and Vileinkin (1989) has Goldstone
field with energy density decreasing with the distance as r−2 and the total energy is
linearly divergent at large distances. Large energy in the Goldstone field surround-
ing global monopole suggests that they can produce strong gravitational field and
influence QNMs of the black hole. A black hole with a global monopole is the
result of an interesting process in which a black hole swallows a global monopole.
It possesses a solid deficit angle which makes it quite different from normal black
holes.

Science the QNMs are exponentially damped in time, only the mode cor-
responding to the fundamental frequency (lowest imaginary part) should up in
signal, we calculate the low-lying modes of black holes. Most methods in eval-
uating the QNMs are numerical in nature. Recently, using the third-order WKB
approximation, Cho evaluated the Dirac field QNMs of a Schwarzschild black hole
Cho (2002). A powerful WKB scheme was devised by Schutz and Will (1985),
and was extended to higher orders in Iyer and Will (1987). Comparing with other
approaches, this WKB approximation is accurate for the low-lying modes Iyer
(1990). QNMs are the intermediate stage and dominated by low-lying modes.
As said early, the QNM frequencies will depend on the black hole parameters,
it should be possible to infer the black hole parameters solely from the QNM
frequencies.

Recently observational evidence suggests that the universe has a positive
cosmological constant. It means the universe responsibly change from asymp-
totical flat to asymptotical de Sitter space-time. The study of QNMs in asymp-
totically de Sitter spacetimes has garnered much attention Moss and Norman
(2002); Mellor and Moss (1990); Cardoso and Lemos (2003); Molina (2003);
Maassen A van den (2003); Suneeta (2003); Zhidenko (2004); Jing (2004).
We have evaluated Neutrino QNMs of a Kerr-Newman-de Sitter black hole
Chang and Shen (2005).

In this paper, we evaluate the QNMs of a Schwarzschild-de Sitter black hole
with a global monopole. We consider the metric of a Schwarzschild-de Sitter black
hole with a global monopole in Sect. 2. In In Sect. 3, we use the third-order WKB
approximation to evaluate the QNMs of massless and massive scalar fields. In
Sect. 4 we evaluate the QNMs for Dirac field case. Conclusions and discussions
are presented in Sect. 4.
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2. A SCHWARZSCHILD BLACK HOLE WITH A GLOABAL
MONOPOLE IN de SITTER SPACE-TIME

The metric of a Schwarzschild black hole with a global monopole can be
written as Barriola and Vileinkin (1989):

ds2 = −
(

1 − 8πη2 − 2M ′

r ′

)
dt ′2 +

(
1 − 8πη2 − 2M ′

r ′

)−1

dr ′2

+ r ′2(dθ2 + sin2 θdϕ2), (1)

where η � mp is the scale factor of symmetry-broking, mp =
√

h̄c
G

is the Planck
mass. In the de Sitter space-time, Eq. (1) can be written as

ds2 = −
(

1 − 8πη2 − 2M ′

r ′ − �′

3
r ′2

)
dt ′2

+
(

1 − 8πη2 − 2M ′

r ′ − �′

3
r ′2

)−1

dr ′2 + r ′2(dθ2 + sin2 θdϕ2). (2)

Introduce a change of variables as follows Shen and Chen (1998):

t = (1 − 8πη2)
1
2 t ′, r = (1 − 8πη2)−

1
2 r ′,

M = (1 − 8πη2)−
3
2 M ′, � = (1 − 8πη2)�′.

(3)

Equation (2) can be written as

ds2 = −f dt2 + 1

f
dr2 + b2r2(dθ2 + sin2 θdϕ2), (4)

with

f = 1 − 2M

r
− �

3
r2 , b2 = 1 − 8πη2, (5)

where M is the effective black hole mass and � is the positive cosmological con-
stant. In the next two sections, we treat M as a unit of mass and calculate quasi-
normal modes of a black hole at � = 0.0225 and b = 0.95. Apart from the deficit
solid angle � = 4πb = 32πGη2, this metric is very similar to the Schwarzschild-
de Sitter metric Yu (2002) and the introduction of a global monopole charge does
not significantly alter the nature of the Schwarzschild-de Sitter field Dadhich et al.
(1998).
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2. QUASINORMAL MODES OF SCALAR FIELD

In the curved space-time, the Klein-Gordon equation is given by

1√−g
∂µ(

√−ggµν∂ν
) = m2
. (6)

Using the anzatz


 = e−iωt R (r)

r
Y (θ, ϕ) , (7)

we can obtain the radial equation,(
d2

dr2∗
+ ω2 − V (r)

)
R (r) = 0, (8)

where

V (r) = l (l + 1)

b2r2
f + m2f + ff ′

r
, (9)

the quantum number of angular momentum l is positive integers, r∗ is the well
known “tortoise” coordinate given by

dr∗ = dr

f
, (10)

and

f ′ = df

dr
. (11)

The WKB approximation developed by Schutz and Will (1985); Iyer and
Will (1987); Iyer (1990) has been used extensively in various black hole cases.
The formula for the quasinormal modes ω in the WKB approximation is given by
Iyer and Will (1987)

ω2 = [V0 + (−2V ′′
0 )1/2�] − i

(
n + 1

2

)
(−2V ′′

0 )1/2 (1 + �) , (12)

where

� = 1

(−2V ′′
0 )1/2

{
1

8

(
V

(4)
0

V ′′
0

)(
1

4
+ α2

)
− 1

288

(
V ′′′

0

V ′′
0

)2 (
7 + 60α2

)}
(13)

� = 1

(−2V ′′
0 )

{
5

6912

(
V ′′′

0

V ′′
0

)4

(77 + 188α2) − 1

384

(
V ′′′2

0 V
(4)

0

V ′′3
0

)
(51 + 100α2)

+ 1

2304

(
V

(4)
0

V ′′
0

)2

(67 + 68α2) + 1

288

(
V ′′′

0 V
(5)

0

V ′′2
0

)
(19 + 28α2)

− 1

288

(
V

(6)
0

V ′′
0

)
(5 + 4α2)

}
. (14)
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Here

α = n + 1

2
, n =

{
0, 1, 2, . . . , Re(ω) > 0,

−1,−2,−3 . . . , Re(ω) < 0,
(15)

V
(n)

0 = dnV

drn∗

∣∣∣∣
r∗=r∗(rmax)

, (16)

n is the mode number and n < l for low-lying modes.
The QNMs are decided by the effective potential. We analyze the dependence

of effective potential on parameters l, �, m, b. The effective potential V is in the
form of barrier which depends on the values of l, �, m, b. The effective potential
as a function of r is plotted for some configurations of l, �, m, b in Figs. 1–4.
From those figures, we can see that the dependence of V on l, �, m is stronger
than on b, in fact b changes the value of l little.

Using WKB approximation to evaluate the QNMs, we plug the effective
potential of Eq. (9) into Eq. (12), and obtain the complex QNMs of scalar field.
Because there exists cosmological constant �, the space-time possesses two hori-
zons: the black hole horizon r = re and the cosmological horizon r = rc. While
r varies from re to rc, the effective potential V reduces to zero, so the potential
barrier can not turn effectively into a potential step Cho (2002).

In the Fig. 1 we show the dependence of scalar field effective potential of the
Schwarzschild-de Sitter black hole with a global monopole on angular momentum
number l . We see the peak value and position of the potential increase with l.

l=5
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2
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0.2

0.4

0.6

0.8

1

V

4 6 8 10
r

Fig. 1. Variation of the effective potential for scalar field with
� = 0.0225, b = 0.95, m = 0, l = 1, 2, 3, 4, 5.



2362 Chang and Shen

Λ=0.1

0.05

0.0225
0.01

0

–0.1

–0.05

0

0.05

0.1

0.15

V

4 6 8 10
r

Fig. 2. Variation of the effective potential for scalar field with
b = 0.95, m = 0, l = 1, � = 0, 0.01, 0.0225, 0.05, 0.1.

Figure 2 shows the dependence of effective potential on the cosmological
constant �. Increasing of � reduces the peak value of the effective potential and
makes the cosmological horizon rc close to the black hole horizon re.

In the Fig. 3, we show the dependence of the effective potential on the mass of
scalar field m. Mass of scalar fields increases the peak value of effective potential.
From Fig. 9, we see b < 1 is a factor to modify l, and the value of b is close to 1.
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Fig. 3. Variation of the effective potential for scalar field with
� = 0.0225, b = 0.95, l = 1, m = 0, 0.01, 0.05, 0.1, 0.5.
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Fig. 4. Variation of the effective potential for scalar field with
� = 0.0225, l = 1, m2 = 0, b = 1, 0.99, 0.95, 0.9, 0.8.

So in the Fig. 4, b changes the effective potential little and the increasing of b is
similar to the decreasing of l.

We plot QNMs of scalar fields with different mass for � = 0.0225, b = 0.95
in Fig. 5. We can see when the mass of the field increases, the real parts of the
frequencies increase while the magnitude of imaginary parts decrease. The smaller
l and n, the more the frequencies will be changed by the mass.

ω

ω

Fig. 5. QNMs of scalar field for � = 0.0225, b = 0.95.
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ω

ω

Fig. 6. QNMs of scalar field for � = 0, m2 = 0.1.

We consider the effective potential of b to the QNMs in Fig. 6. Decreasing of
b means the increasing of l, which makes the real and the magnitude of imaginary
parts of frequencies increase.

In Table I, we compare the frequencies of different value of � for b = 1
which means a black hole without a global monopole. The existence of � reduces

Table I. QNMs of Scalar Field for m2 = 0.1, b = 1

l n � = 0 � = 0.0009 � = 0.0225 � = 0.09

1 0 0.336–0.0686i 0.335–0.0683i 0.301–0.0684i 0.139–0.0412i
2 0 0.515–0.0857i 0.5130–0.0855i 0.458–0.0795i 0.218–0.0416i

1 0.479–0.272i 0.477–0.271i 0.435–0.243i 0.216–0.125i
3 0 0.699–0.0907i 0.696–0.0905i 0.622–0.0826i 0.300–0.0418i

1 0.677–0.278i 0.675–0.277i 0.608–0.250i 0.298–0.125i
2 0.642–0.477i 0.640–0.475i 0.583–0.422i 0.296–0.209i

4 0 0.886–0.0929i 0.882–0.0926i 0.789–0.0839i 0.382–0.0418i
1 0.871–0.282i 0.868–0.280i 0.780–0.253i 0.381–0.126i
2 0.845–0.477i 0.841–0.475i 0.7612–0.425i 0.379–0.209i
3 0.811–0.680i 0.808–0.676i 0.736–0.600i 0.376–0.293i

5 0 1.08–0.0940i 1.07–0.0936i 0.959–0.0846i 0.465–0.0419i
1 1.06–0.284i 1.06–0.282i 0.951–0.254i 0.464–0.126i
2 1.04–0.477i 1.04–0.475i 0.936–0.426i 0.463–0.210i
3 1.01–0.677i 1.01–0.674i 0.916–0.601i 0.461–0.293i
4 0.981–0.881i 0.978–0.877i 0.891–0.777i 0.457–0.377i
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both the real parts and the magnitude of imaginary parts of frequencies. Just like
mass of the scalar field, the smaller l and n, the more the frequencies will be
changed by the mass �.

3. QUASINORMAL MODES OF DIRAC FIELD

According to Brill and Wheeler (1957), the Dirac equation in a general
background space-time can be written as

[γ aeµ
a (∂µ + �µ) + m]� = 0, (17)

here γ a are the Dirac matrices,

γ 0 =
(

−i 0

0 i

)
, γ i =

(
0 −iσ i

iσ i 0

)
, i = 1, 2, 3, (18)

while σ i are the Pauli matrices and m is the mass of the Dirac field, the four-vectors
e
µ
a is the inverse of the tetrad ea

µ defined by the metric gµν ,

gµν = ηabe
a
µeb

ν , (19)

where ηab = diag(−1, 1, 1, 1) is the Minkowski metric. �µ are the spin connection
coefficients, which are written as

�µ = 1

8
[γ a, γ b]eν

aebν;u, (20)

here ebν;µ = ∂µebν − �α
µνebα is the covariant derivative of ebν and �α

µν is the
Christoffel symbol.

Taking the tetrad to be

ea
µ = diag

(√
f ,

1√
f

, br, br sin θ

)
, (21)

the spin connection coefficients �µ can be written as

�0 = 1
4

df

dr
γ0γ1, �1 = 0,

�2 = 1
2

√
f bγ1γ2, �3 = 1

2 (sin θ
√

f bγ1γ3 + cos θγ2γ3).
(22)

The Dirac Eq. (17) is changed to be

− γ0√
f

∂�

∂t
+

√
f γ1

(
∂

∂r
+ 1

r
+ 1

4f

df

dr

)
� + γ2

br

(
∂

∂θ
+ 1

2
cot θ

)
�

+ γ3

br sin θ

∂�

∂ϕ
+ m� = 0. (23)
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We simplify Eq. (23) by defining

� = f −1/4
, (24)

then the Dirac equation becomes

− γ0√
f

∂


∂t
+

√
f γ1

(
∂

∂r
+ 1

r

)

 + γ2

br

(
∂

∂θ
+ 1

2
cot θ

)



+ γ3

br sin θ

∂


∂ϕ
+ m
 = 0. (25)

Equation (25) is related to the Dirac equation in flat space-time with central poten-
tial Bjorken and Drell (1964). We introduce the tortoise coordinate transformation
from the radial variable r to the tortoise coordinate r∗ and try the ansata,


(t, r, θ, φ) =

⎛
⎜⎜⎝

iG(±)(r)

r
φ±

jm(θ, ϕ)

F (±)(r)

r
φ∓

jm(θ, ϕ)

⎞
⎟⎟⎠ e−iωt , (26)

with spinor angular harmonics

φ+
jm =

⎛
⎜⎜⎜⎝

√
j + m

2j
Y

m−1/2
l√

j − m

2j
Y

m+1/2
l

⎞
⎟⎟⎟⎠ ,

(
for j = l + 1

2

)
, (27)

φ−
jm =

⎛
⎜⎜⎜⎝

√
j + 1 − m

2j + 2
Y

m−1/2
l

−
√

j + 1 + m

2j + 2
Y

m+1/2
l

⎞
⎟⎟⎟⎠ ,

(
for j = l − 1

2

)
, (28)

that Ym±1/2
l (θ, ϕ) represents ordinary spherical harmonics. Then the Dirac Eq. (25)

can be written in the simplified matrix form(
0 −ω

ω 0

)(
F±

G±

)
− ∂

∂r∗

(
F±

G±

)
+

√
f

(
κ±
br

m

m
κ±
br

)(
F±

G±

)
= 0, (29)

with the constant

κ± =

⎧⎪⎪⎨
⎪⎪⎩

j + 1

2
, j = l + 1

2

−
(

j + 1

2

)
, j = l − 1

2

, (30)

which are negative and positive integers.
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In order to simplify the radial equations, we consider separately the (+) and
(−) cases. For (+), we make a change of variables Chandrasekhar (1983):

(
F̂+

Ĝ+

)
=

⎛
⎜⎜⎝

sin

(
θ+
2

)
cos

(
θ+
2

)

cos

(
θ+
2

)
− sin

(
θ+
2

)
⎞
⎟⎟⎠

(
F+

G+

)
, (31)

where

θ+ = arctan

(
bmr

|κ+|
)

. (32)

Then Eq. (29) can be written as

d

dr∗

(
F̂+

Ĝ+

)
−

√
f

√(κ+
br

)2
+ m2

(
1 0

0 −1

) (
F̂+

Ĝ+

)

= −ω

(
1 + 1

2ω
f

mb|κ+|
κ2 + b2m2r2

)(
0 −1

1 0

)(
F̂+

Ĝ+

)
. (33)

We make another coordinate transformation to simplify these equations as

r̂∗ = r∗ + 1

2ω
arctan

(
bmr

|κ+|
)

, (34)

and then Eq. (33) is changed to be

d

dr̂∗

(
F̂+

Ĝ+

)
+ W+

(−F̂+

Ĝ+

)
= ω

(
Ĝ+

−F̂+

)
, (35)

where

W+ =
√

f

√(
κ+
br

)2 + m2

1 + 1
2ω

f
(

bm|κ+|
κ2++b2m2r2

) . (36)

These equations can be decoupled to(
− d2

dr̂2∗
+ V+1

)
F̂+ = ω2F̂+, (37)

(
− d2

dr̂2∗
+ V+2

)
Ĝ+ = ω2Ĝ+, (38)

with

V+1,2 = ±dW+
dr̂∗

+ W 2
+. (39)
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Similar to the case of (+), equations for the case (−) can be written as(
− d2

dr̂2∗
+ V−1

)
F̂− = ω2F̂−, (40)

(
− d2

dr̂2∗
+ V−2

)
Ĝ− = ω2Ĝ−, (41)

where

V−1,2 = ±dW−
dr̂∗

+ W 2
−, (42)

with

W− =
√

f

√(
κ−
br

)2 + m2

1 − 1
2ω

f
(

bm|κ−|
κ2−+b2m2r2

) . (43)

We can put the (+) and (−) cases together and simply name the radial
equations F and G. Correspondingly, the two decoupled equations can be ex-
pressed in the form (

− d2

dr̂2∗
+ V1

)
F̂ = ω2F̂ , (44)

(
− d2

dr̂2∗
+ V2

)
Ĝ = ω2Ĝ, (45)

where

V1,2 = ±dW

dr̂∗
+ W 2, (46)

with

W =
√

f

√(
κ
br

)2 + m2

1 + 1
2ω

f
(

bm|κ|
κ2+b2m2r2

) . (47)

Here κ is all positive and negative integers. Positive integers represent the (+)
case with

κ = j + 1

2
and j = l + 1

2
, (48)

while negative integers represent the (−) case with

κ = −
(

j + 1

2

)
and j = l − 1

2
. (49)
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Fig. 7. Variation of the effective potential for Dirac field with
� = 0.0225, b = 0.95, m = 0, κ = 1, 2, 3, 4, 5.

From the Schrödinger-like equations in Eqs. (44) and (45), we can evaluate
the QNMs. The forms of V1 and V2 shown in Eq. (46) are super-symmetric
partners derived from the same super-potential W Cooper et al. (1995). Reference
Anderson and Price (1991) has proved that potentials related in this ways have the
same spectral of QNMs. So we deal with Eq. (44) with potential V1 in evaluating
the QNMs. The effective potential also depends on ω. This will complicate matters
in Eq. (12) because there are ω dependence on both sides of the equation.

First we analyse the dependence of the effective potential on the parameters
m, κ, b,�,ω. We can see from the Fig. 7 that the dependence of effective potential
on κ of Dirac field is similar to the case of scalar field. In Figs. 9 and 10, we show
dependence of the effective potential on other parameters respectively. Compared
with the effective potential mentioned in Cho (2002), the most difference is the
asymptotic value,

V (r → ∞) = m2, Schwarzschild black hole,

V (r → rc) = 0, Schwarzschild de-Sitter black hole.
(50)

The effective potential remains potential barrier. Tunnelling to occur ω2 of
the Dirac field must be smaller than the peak value of the potential and the energy
of the Dirac field is always larger than the mass m, so the QNMs exist only when
m2 < ω2 < Vmax. We can estimate the maximum value mmax from Cho (2002):

V (rmax,mmax, κ, b,�,ω = mmax) = (mmax)2 . (51)

We solve it numerically and list the result in Table II, where we give the maximum
value of µ = m/κ . The results suggest that � reduce the value of µmax.
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Fig. 8. Variation of the effective potential for Dirac field with
� = 0.0225, b = 0.95, ω = 0.1, κ = 1, m = 0, 0.01, 0.05, 0.1, 0.5.

By writing the potential in Eqs. (46) and (47) as V (r, κ,m = κµ,

ω,�, b), the maximums of µ listed in Table II indicate that µ can be treated
as a small parameter for expansion. We obtain the QNMs in WKB approximation
as power series of µ for given values of κ Seidel and Iyer (1990); Simone and
Will (1992); Cho (2002).

We first express the position of the peak of the effective potential as serial up
to order µ6,

0.0225 0.01
0.05

0

0.01

0.02

0.03

0.04

0.05

V

4 6 8 10 12
r

Fig. 9. Variation of the effective potential for Dirac field with
b = 0.95, ω = 0.1, κ = 1, m = 0.1, � = 0, 0.01, 0.0225, 0.05.
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Fig. 10. Variation of the effective potential for Dirac field with
b = 0.95, � = 0.0225, κ = 1, m = 0.1, ω = 0.1, 0.5, 1, 20, 100.

rmax = r0 + r1µ + r2µ
2 + r3µ

3 + r4µ
4 + r5µ

5 + r6µ
6

= r0 + �, (52)

and

0 = V ′ (rmax)

= V ′ (r0) + �V ′′ (r0) + 1

2
�2V ′′′ (r0) + 1

6
�3V (4) (r0)

+ 1

24
�4V (5) (r0) + 1

120
�5V (6) (r0) + 1

720
�6V (7) (r0) . (53)

Table II. Maximums of the Mass µ of Dirac Field Above Which QNMs Cannot Occur
with |κ| = 1 to 5 for b = 1

κ µmax(� = 0) µmax(� = 0.0009) µmax(� = 0.0225) µmax(� = 0.09)

−5 −0.263 −0.260 −0.212 −0.0877
−4 −0.267 −0.264 −0.214 −0.0881
−3 −0.273 −0.270 −0.218 −0.0886
−2 −0.283 −0.283 −0.226 −0.0908
−1 −0.333 −0.330 −0.261 −0.0993

1 0.224 0.223 0.197 0.0932
2 0.226 0.225 0.194 0.0879
3 0.232 0.230 0.196 0.0870
4 0.236 0.234 0.198 0.0867
5 0.238 0.237 0.190 0.0866
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Table III. Real Parts of the Coefficients of the Expansions in Power of µ for the QNMs with
|κ| = 1 to 5 for � = 0.0225, b = 0.95

|κ| n Re(ω0) Re(ω1) Re(ω2) Re(ω3) Re(ω4) Re(ω5) Re(ω6)

1 0 0.1693 −0.1453 0.5500 −0.3968 1.283 −5.686 7.796
2 0 0.3575 −0.1300 1.365 0.2497 0.9690 1.915 −0.8212

1 0.3395 −0.1290 0.7535 −0.7397 0.8720 −12.20 28.53
3 0 0.5402 −0.1275 2.137 0.3908 0.9862 1.538 0.9568

1 0.5281 −0.1297 1.694 −0.2227 2.726 −1.1013 27.16
2 0.5069 −0.1260 0.9469 −0.8146 0.2356 −15.35 31.12

4 0 0.7218 −0.1269 2.889 0.4305 0.9627 1.224 −0.07142
1 0.7128 −0.1286 2.549 0.05743 3.087 1.506 21.15
2 0.6961 −0.1287 1.932 −0.4737 3.617 −5.224 57.11
3 0.6735 −0.1248 1.133 −0.8544 −0.5692 −17.01 30.99

5 0 0.9032 −0.1266 3.634 0.4486 0.9623 1.049 −1.252
1 0.8959 −0.1279 3.359 0.2022 3.034 1.871 15.55
2 0.8822 −0.1288 2.843 −0.2031 4.873 −0.6548 52.75
3 0.8631 −0.1277 2.141 −0.6085 3.801 −8.450 77.67
4 0.8397 −0.1243 1.315 −0.8781 −1.464 −18.00 30.09

Where r0 is the position of the peak for the massless Dirac field effective po-
tential. From Eq. (47) for the massless Dirac field case, the expression of ef-
fective potential V doesn’t depend on ω and can be solved independently. We
evaluate the coefficients ri’s order by solving this equation. The expression
of rmax contains µ and unknown ω by given � and b. We also expand ω as
ω = ω0 + ω1µ + ω2µ

2 + ω3µ
3 + ω4µ

4 + ω5µ
5 + ω6µ

6 and plug in the expan-
sion for rmax, and then expand the derivation of the potential V

(n)
0 performed

with respect to r̂∗. We plug all these expansions back to Eq. (12) and can solve
the coefficients ωi’s self-consistently order by order in µ. We list the results of
� = 0.0225, b = 0.95 by taking four significant digits in Tables III and IV.

We check the QNMs for κ = 1 and n = 0. For m = 0,

ω = ω0 = 0.1693 − 0.08800i, (54)

for m = 0.1,

ω0 = 0.1693 − 0.08800i,

ω1m = −0.01453 − 0.003811i,

ω2m
2 = 0.005500 + 0.003871i,

ω3m
3 = −0.0003968 + 0.0006175i,

ω4m
4 = 0.0001283 + 0.00004488i,

ω5m
5 = −0.00005686 − 0.00008623i,

ω6m
6 = 0.000007796 − 0.00003765i,

(55)
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Table IV. Imaginary Parts of the Coefficients of the Expansions in Power of µ for the QNMs
with |κ| = 1 to 5 for � = 0.0225, b = 0.95

|κ| n Im(ω0) Im(ω1) Im(ω2) Im(ω3) Im(ω4) Im(ω5) Im(ω6)

1 0 −0.08800 −0.03811 0.3871 0.6175 0.4488 8.6228 −37.65
2 0 −0.08601 −0.01095 0.4560 0.4640 0.03789 2.051 −2.386

1 −0.2633 −0.04504 1.139 0.2860 4.248 6.265 65.59
3 0 −0.08594 −0.006818 0.4609 0.3150 −0.3549 0.5060 −4.262

1 −0.2600 −0.02478 1.280 0.5967 2.126 6.472 15.88
2 −0.4383 −0.04651 1.858 0.1927 8.767 5.456 170.6

4 0 −0.08593 −0.005024 0.4623 0.2377 −0.5267 0.1351 −4.982
1 −0.2590 −0.01697 1.330 0.5659 0.6092 3.533 −1.387
2 −0.4348 −0.03195 2.046 0.5232 5.892 8.076 73.49
3 −0.6134 −0.04752 2.575 0.1428 13.40 4.760 261.0

5 0 −0.08593 −0.003991 0.4629 0.1907 −0.6117 0.01554 −5.211
1 0–0.2585 −0.01296 1.352 0.4946 −0.2976 1.922 −8.361
2 −0.4330 −0.02393 2.140 0.5962 3.4529 6.184 28.29
3 −0.6098 −0.03619 2.788 0.4427 10.18 8.220 145.6
4 −0.7886 −0.04830 3.290 0.1094 18.00 4.199 346.0

taking three significant digits, both the real and imaginary parts of ωµ4 and higher
order do not contribute to the frequency, so

ω = 0.160 − 0.0872i (56)

is accurate up to at least three significant digits.
For m = 0.2,

ω0 = 0.1693 − 0.08800i,

ω1m = −0.02905 − 0.007621i,

ω2m
2 = 0.02200 + 0.01548i,

ω3m
3 = −0.003175 + 0.004940i,

ω4m
4 = 0.002053 + 0.0007181i,

ω5m
5 = −0.001820 − 0.002759i,

ω6m
6 = 0.0004989 − 0.002410i,

(57)

and

ω = 0.160 − 0.0741i. (58)

We see that the highest order ωm6 will contribute to ω. Requiring result to
be three significant digits, we need to consider the higher orders than µ6. But
we expand terms up to µ6, so we disregard this result for m = 0.2, though there
should be a QNMs around this value.

For different values of κ and n, we calculate QNMs of m = 0, 0.1, 0.2, 0.5
and plot the results in Fig. 11 expect the results which three significant digits
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Fig. 11. QNMs of Dirac field for � = 0.0225, b = 0.95.

accuracy cannot be maintained with terms expanded up to µ6. Increasing of mass
of Dirac fields leads to the real parts of QNMs increase and imaginary parts
decrease. In Table V and Fig. 12, we list and plot the QNMs for different � and b,
� makes both real and magnitude of imaginary parts of QNMs decrease; b makes
the real parts increase and makes the magnitude of imaginary parts decrease.

Table V. QNMs of Dirac Field for m = 0.1, b = 1

|κ| n � = 0 � = 0.0009 � = 0.0225 � = 0.09

1 0 0.164–0.102i 0.164–0.102i 0.149–0.0879i
2 0 0.377–0.0922i 0.375–0.0917i 0.339–0.0816i 0.172–0.0408i

1 0.344–0.296i 0.342–0.293i 0.312–0.256i 0.138–0.123i
3 0 0.581–0.0908i 0.579–0.0904i 0.522–0.0812i 0.259–0.0410i

1 0.556–0.282i 0.555–0.281i 0.503–0.248i 0.258–0.123i
2 0.518–0.489i 0.516–0.487i 0.473–0.423i 0.255–0.206i

4 0 0.783–0.0903i 0.781–0.0898i 0.703–0.0812i 0.347–0.0411i
1 0.764–0.275i 0.761–0.275i 0.688–0.245i 0.346–0.123i
2 0.730–0.473i 0.727–0.471i 0.664–0.415i 0.344–0.206i
3 0.691–0.683i 0.688–0.680i 0.631–0.589i 0.341–0.288i

5 0 0.985–0.0900i 0.982–0.0897i 0.884–0.0811i 0.435–0.0412i
1 0.970–0.272i 0.966–0.272i 0.871–0.244i 0.434–0.123i
2 0.941–0.465i 0.937–0.464i 0.852–0.411i 0.433–0.206i
3 0.903–0.667i 0.899–0.664i 0.823–0.584i 0.429–0.289i
4 0.864–0.877i 0.861–0.871i 0.790–0.756i 0.426–0.371i
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Fig. 12. QNMs of Dirac field for m = 0.1,� = 0.

4. DISSCUSSION AND CONCLUSION

We have evaluated both scalar and Dirac low-lying QNMs of a Schwarzschild-
de Sitter black hole with a global monopole, using the WKB approximation. For
the massive Dirac field, we adopt a further approximation by making perturbative
expansions for all the quantities in powers of parameter µ. In this way, we can
obtain QNMs up to three significant digits.

In general, the real parts of QNMs increase with l for scalar field and with κ

for Dirac field, but they decrease with mode number n for fixed l or κ . The magni-
tudes of the imaginary parts increase with n. The mass of the field makes the real
parts of QNMs increase and makes the imaginary parts decrease Simone and Will
(1992); Cho (2002). From Figs. 5 and 11, we find the influence of mass on QNMs
is different for scalar and Dirac fields. For larger quantum number l, the influence
of mass to the real parts of scalar QNMs is smaller, but the other way round for
Dirac case. The cosmological constant � reduces the magnitudes of maximum
mass of Dirac field for fixed κ , and decreases both the real and magnitude of imag-
inary parts of QNMs of scalar and Dirac fields. From the Eqs. (9) and (47), we see
that b is a factor of κ or l which can increase the magnitudes little, so b increases
the real parts of the QNMs and decreases the magnitudes of the imaginary parts.

All the QNMs above are measured in units of the black hole mass M . To con-
vert those to Hz must multiply by 32310M	

M
. For a one solar mass black hole, ω =

0.160 − 0.0872 is corresponding to ringing frequency 32310 × 0.160 = 5.17 kHz

and a damping timescale τ = 1
32310×0.0872 = 3.55 × 10−4s.
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We can use WKB methods to other black holes. All these efforts will enrich
our knowledge about QNMs of different kind of black holes and give direct
identification to distinguish the kind of black holes, through gravitational wave
detectors in the future.
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